Telegram Group & Telegram Channel
Почему AlphaDev не перевернул всё вверх дном?

Поговорим о недавно вышедшей от Deepmind статье, в которой обучали нейросеть для поиска более быстрого алгоритма сортировки. Я уже рассказывал про статьи AlphaZero и AlphaTensor, использующих в сущности тот же самый метод (советую изучить)

Особенности данного случая:
1) Пишем программу на ассемблере, генерируя команды по одной. Команды (действия) это элементарные операции сравнения, присваивания и т.д.
2) "Состоянием" в каждый момент является программа, сгенерированная на данный момент, и результат исполнения этой программы.
3) Наградой агента является штраф за длину программы (или время финального исполнения) и за неправильность итогового алгоритма, измеряемую тестами.

Какой результат?

Мы решаем по отдельности задачи создания алгоритма для сортировки массивов фиксированной длины. Начиная с длины 3 и заканчивая 8, выигрыш AlphaDev у человека составил 1, 0, 4, 3, 2, 1 операций. Интуитивно, а также по опыту AlphaTensor, кажется, что при увеличении размера входа нейросеть должна наращивать преимущество по сравнению с человеком, т.к. человеку гораздо сложнее работать с большим количеством объектов.

Почему здесь не так круто? Напишу свои гипотезы, буду рад почитать ваши мысли:

1) Нейросети с их многоразмерными неинтерпретируемыми представлениями не так хорошо дружат с дискретными командами в программировании. Это в принципе усложняет поиск.
2) Нам нужно сгенерировать более длинную последовательность команд, которая должна быть согласована между собой и порождать строгий алгоритм. Это мешает на больших входах.
3) Человек в принципе достаточно силён в программировании по сравнению с матричными перемножениями, поскольку это более близкая к человеческому мышлению вещь. Поэтому на маленьких входах мы уже смогли создать близкий к оптимальному алгоритм.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/69
Create:
Last Update:

Почему AlphaDev не перевернул всё вверх дном?

Поговорим о недавно вышедшей от Deepmind статье, в которой обучали нейросеть для поиска более быстрого алгоритма сортировки. Я уже рассказывал про статьи AlphaZero и AlphaTensor, использующих в сущности тот же самый метод (советую изучить)

Особенности данного случая:
1) Пишем программу на ассемблере, генерируя команды по одной. Команды (действия) это элементарные операции сравнения, присваивания и т.д.
2) "Состоянием" в каждый момент является программа, сгенерированная на данный момент, и результат исполнения этой программы.
3) Наградой агента является штраф за длину программы (или время финального исполнения) и за неправильность итогового алгоритма, измеряемую тестами.

Какой результат?

Мы решаем по отдельности задачи создания алгоритма для сортировки массивов фиксированной длины. Начиная с длины 3 и заканчивая 8, выигрыш AlphaDev у человека составил 1, 0, 4, 3, 2, 1 операций. Интуитивно, а также по опыту AlphaTensor, кажется, что при увеличении размера входа нейросеть должна наращивать преимущество по сравнению с человеком, т.к. человеку гораздо сложнее работать с большим количеством объектов.

Почему здесь не так круто? Напишу свои гипотезы, буду рад почитать ваши мысли:

1) Нейросети с их многоразмерными неинтерпретируемыми представлениями не так хорошо дружат с дискретными командами в программировании. Это в принципе усложняет поиск.
2) Нам нужно сгенерировать более длинную последовательность команд, которая должна быть согласована между собой и порождать строгий алгоритм. Это мешает на больших входах.
3) Человек в принципе достаточно силён в программировании по сравнению с матричными перемножениями, поскольку это более близкая к человеческому мышлению вещь. Поэтому на маленьких входах мы уже смогли создать близкий к оптимальному алгоритм.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/69

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

The STAR Market, as is implied by the name, is heavily geared toward smaller innovative tech companies, in particular those engaged in strategically important fields, such as biopharmaceuticals, 5G technology, semiconductors, and new energy. The STAR Market currently has 340 listed securities. The STAR Market is seen as important for China’s high-tech and emerging industries, providing a space for smaller companies to raise capital in China. This is especially significant for technology companies that may be viewed with suspicion on overseas stock exchanges.

NEWS: Telegram supports Facetime video calls NOW!

Secure video calling is in high demand. As an alternative to Zoom, many people are using end-to-end encrypted apps such as WhatsApp, FaceTime or Signal to speak to friends and family face-to-face since coronavirus lockdowns started to take place across the world. There’s another option—secure communications app Telegram just added video calling to its feature set, available on both iOS and Android. The new feature is also super secure—like Signal and WhatsApp and unlike Zoom (yet), video calls will be end-to-end encrypted.

Knowledge Accumulator from sa


Telegram Knowledge Accumulator
FROM USA